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ABSTRACYT

Numerical computations have been performed to
investigate the interaction of two counter-rotating vortices with
a free surface in a viscous, incompressible fluid where the
motion is considered two-dimensional and laminar. The
decaving vortices deform the free surface during their
approach and they can display the phenomenon of
“rebounding.”” The numerical scheme is based on the
Navier-Siokes equations and uses beundary-fitted coordinates
to accommodate the locally high vorticity of the moving
vortices and the nonlinear deformation of the free surface.

ADMINISTRATIVE INFORMATION

This project was supported by the Office of the Chief of Naval
Rescarch, and administered by Dr. Edwin P. Rood, I'luid Dynamics Program
(1132F) under ONR Contract No. N0001489-W X-24020.

INTRODUCTION

Two  counter-rotating  vortices in a two-dimensional viscous {luid
approach through self-induction a free surface and interact with it. The fluid is
considered incompressible and the laminar flow transient, with the fluid
ultimatcly coming to rest. This scenarto may be envisioned as an
approximation to a pair of vortex filaments in the far wake of a slowly moving
body under water.

Various models of different relevance to this problem can be found in
the literature. The classical Lamb solution describes the potential flow
gencerated by a pair of counter-rotating point vortices approaching or leaving a
straight boundary. The paths of the vortices are given by

X7 4y = 4x%y? (1)

in a Carlesian coordinate system (v, y) with the unit distance between the two
vortices far away from the boundary.! The behavior of a pair of vortices with
an elliptic core was studied by Saffman.?

In a viscous fluid an additional boundary condition must be specified tor
the tangential velocity component. Under nonslip, vorticity of opposite sign to
the approaching vortices will be generated, and the paths will be different from
that described by Eq. (1). Flow separation can occur at the boundary with the
subsequent development of secondary vortices. The primary vortices will turn
away [rom the boundary, a phenomenon that is called “rebounding”.’* A
numerical computation of the boundary layer at the wall was performed by
Lirsoy and Walker.”

Rebounding was also observed experimentally by Barker and Crow? at a
water surface. No information, however, was given on the shape of the
surface. The vortices were generated by a moving and then abruptly retracted
plate in a water tank. Different methods of vortex gencration were used by
Sarpkaya and Ilenderson® and by Willmarth et al.” - L0 studied the




disturbance of the water surface in three dimensions by the steady movement
of a hydrofoil and by counter-rotating flaps, respectively.

. o 85 g {
A numerical approach was used by Sarpkaya et al..® Telste.”
1 . 7 - . . . .
Marcus."" and Willmarth ¢t al.” for two-dimensional potential flow with two
counter-rotating vortices approaching a nonlinear free surface.

The corresponding viscous problem was tackled by Peace and Riley!!
for a plane surface with cither @ nonslip or a perfect-slip condition. For the
inttial flow development they used a viscous inner solution and an inviscid
outer solution. After this mitial phase, a finite-difference scheme for the
Navier-Stekes cgnations was applied.

In this report the viscous-flow problem is solved for » nonlincar free
surface which produces vorticity according to the formula: Vorticity equals two
tmes  curvalure times  tangential velocity at the free surface. A finite-
difference scheme is used for the entire time span during which the vortices
approach the frec surface.

STATEMENT OF THE PROBLEM

A pair of vortices of cqual strength # but opposite sign, a distance a
apart, approaches through self-induction an inttially undisturbed free surface at
v = 0 in the Cartesian coordinate system (v, y) (Fig. 1). With the
corresponding velocity components ¢ and v’ the time-dependent (low ficld of
the incompressible Newtonian fluid is described by

T T Ty Lap  Pu | Pu' 5
— i v = T (T ) (2)
ot X A p X dx’= o

' N gt R A g
e LS L 1J s o=y
i i e G ey ® I I (3)
At Jx A p oy ox’< ay -

u n L)l‘,‘ -0
()v\‘

. (4)

with ¢, p’. po 1. and g the time, total pressure, density, kinematic viscosity,
and constant of gravity, respectively.
The free surface is described by y'= Y'(x', ¢') and is part ol the
solation. On this free surface the boundary conditions are
Y’ ) &
-

A’ ax

|§S]




u', oY’ u’ '
g PP Zy=0, 6
P =20 e T T o0 (6)
' e’ ', oYy’
C R e | 7
(p" —2p 0}_,) + 4 T ol (7)

Surface tension 1s neglected. The other boundary conditions arc

'

'\‘:

X =

-t u=v=0.p' = 4, (8)

U.—?C<\"<Y’:—{_—)v—,:().u':().%)&,z(). (9)
T dx dx

+x L, <y L0 uw=v=0 ,p = —pyy . (1)

Since the flow field is symmetric about the line ¥ = 0, only the half

lane 2" > 0 with one vortex at x" = x', and y' = v, i1s considered (Ifig. 1).
i, v . SV I

1.

2

The tollowing assumptions are made for the inmitial conditions at t' = ty:
The free surface is undisturbed.
A point vortex with strength x at the position x' = x', and v/ = ¥/, is
mtroduced whose flow ficld 1s irrotational and 1s described o the
quadrant x' > 0, y" < 0 by
' ot L 7
({; X V)(*" + -~ V)

O+ i = —irlog —— (11)
(2" =2WE"+2)

where 27 = x' +y" and ¢’ and ¢ are the potential function and the stream
function, respectively.

The analytic solution (11) of the flow field does not satisfy the boundary
condition (7). This inconsistency has only a small numecrical cffect on
the first few time steps.

Since the point vortex represents a singularity with infinite vorticity in the
flow field, it is practical to assume a certain decay of the point vortex to
accommodate it for a finite-difference grid. If this decay is confined to a
local area about the center of the vortex so that there is no appreciable
cffect on the second vortex, that is, on the symmetry line (or on the free
surface), the Hamel-Oseen solution can be applied:!!+12

7

o R g (e 2
Yy = r'[] exp 41/(1’—r’0))] (12)

with g =V u? +vtand 't = (=3, F (0 -y

It is convenient to introduce the tollowing dimensionless quantities:




ALVLY)Y = al v Y)Y L= L vy = Valu, )

0
H

) - .o , a \
plos VP — vk o= P Vi = a7 (13)

with 7/ the initial depth of the vortices, Vy the itial translational velocity of
the vortex pair (it may be mentioned that this scaling makes the unit distance
in 1. (1) only approximate, that is, 0.99), and P the scaled dynamic pressure.
The dimensionless flow paramecters are the Froude and the Reynolds numbers
I'» and Re. respectively:

V3 - Via .

Y () A (] I\

lr- = — = - . Re = —— = — | (11)
2a ea’ g %

Morcover, the infinite domamn of integration s approximated by a finite
domain for numerical reasons.  Also, the mcertial terms are expressed in
conservation torm. ‘Then, the inttial-boundary value problem s defined by

. 5 -
T A ALy a1 amu -
‘4—4-—.—+"‘(f_“)‘:‘“‘—’f"‘("_,+ ) . (13)
t X s i Re oy~ N
e o )
e [f([ll') ) f/l': 1k 1 Z N e ) (1(‘)
_— = T = ——— ¢ {5 k) .
i TS v iy Re it Ty
y o
L (7)
IEAY ( )'\'

with the following boundary conditions:

Y ay
v= Y =V -- U 13
_ o n (1)
2 i JY 1, du N
(P =L S ) = (19)
Fr- Re x " Oy Re v oY
4 2O ] e Y
oy L (20)
Fr- Re v Re " v ax " dx
vooroosvg s P= 0w v obtained by 2nd—order extrapolation
along coordinate line into the interior (21
= 1v)\' . 1')[)
_\,’:.(),\\'/<\'/\Y ‘.-_‘:(’.ll‘i(). - :”, (:2)
o T (X EAY
Xoc oAy L=y <y 0 0 P 0 D, v obtained by 2Znd—order
extrapolation along coordinate line into the interior (23)
The mitial conditions at 1= f; are:
4




Position of vortex: x, = 1/2, v, = —4.

The flow field is irrotational and, according to Lq. (11),

I —I N + 2z,
O +id= —ilog ( _)( __‘) (24)
(2 — 2@ +2)

except for the vicinity of the vortex center with the circular boundary r; :

v, = -*1—[1 —e.\'[)(————rz—ﬁ()——)] oy (25)

5 r g, — o) - ;

FFor a certain ry, which is determined by the permissible error, f; can

be computed and is for the examples mn this report ¢ == 0.125 with ¢4 = 0.

This £; 1s then chosen as the start of the computation: ¢ = 1, = ( with
ty = —0.125,

NUMERICAL TECHNIQUE

The numerical solution of the initial-boundary value problem, as
expressed m LEgs. (15) through (25), i1s carried out with the aid of a finite-
difference technique and boundary-fitted coordinates.

Boundary-fitted coordinate transformation

Fig. 1b 1s a schematic drawing of how the physical space is mapped onto
the computational domain. Only the coordinate lines which form the
boundarics of the two regions are drawn. The coordinate lines in physical
space are mapped onto a uniformly spaced Cartesian mesh with a unit mesh
spacing in each coordinate direction.

As the flow field evolves in time, the grid in physical space will move
and its coordinate lines will be attracted to regions of high flow gradients
through the use of an adaptive-grid technique to be discussed later. However,
the Cartesian grid in computational space always remains fixed and uniferm.
This 1s the major advantage of using a mapping.

For Re = 10, Fr = 1.125, the physical region extends from x = 0 to
0.0 and from v = —6.0 to the free surface which is initially at v = 0. This
physical region is mapped onto a computational space with a Cartesian grid
consisting of 91 equally-spaced points in both the ¢— and y- coordinate
directions.  For the two Re = 50 cases, the physical regions extend from
X = 0to 10.3 and {from y = —6.0 to the free surface. These physical regions
are mapped onto a computational space with a Cartestan grid consisting of 157
points n the f—vordinate direction and 135 points in the ny—coordinate
direction.  Figs. 2 through 4 display representative physical-space grids at
various times.




The curvilinear coordinates (€, 1) are obtained as solutions of the two
clliptic partial differential equations with the physical-space coordinates (x, y)
as imdependent variables

i

. e} ; N
w+ &y = () PE(E ), (26)

S

ee + lyy = (3 +13) Q¥ (&, 1) . (27)

However, since all caleulations are to be done in the rectangular computational
domain. these two clliptic partial differential equations are transformed by
interchanging the dependent and independent variables.  As a result, the
physical-space coordinates (x, ¥) are solved in terms of the computational
space coordinates (€, 1) at cach time step. The transformation yiclds, with
partial derivatives now symbolized by subscripts for simplicity,

(},\‘Et' — 2;3,\,'5,, —+ "i,\',’,,] + ('\I):é:.\:\c + ",’L)*,\fu = 0 5 (28)
”-‘.Q‘Q‘ - :.’..‘7‘.\":'u -+ A"}',m -+ (ll):ei":' —+ A"L):E:}‘” = () N (29)

with

= Xp 4y
J= v, +yeyy, (30

- 22
i= X§ + Vi
Lor later use. the Jacobian of the transformation is given by
J = xeyy, — X,y

The form of the control functions P# and Q* for the coordinate system
will be presented when adaptive-grid generation is discussed.

The Navier-Stokes equations (15) and (16) are in curvilinear coordinates
< 14
(5. n):

u, —x(vue —veu ) —y(xeu, —xue)fJ

+ ,,"11(“2)5 __"E(uz)ul/‘] + [""f(u")u ——.\',](LIV)A/J + (.\',,1)5 *)'6]):;)/-/

I

(lge — 23U gy + Uy + 00U, + TFug)/ReJ? (31)

= (e —ver )M = vlxer, —xv )M

+ v, () — ve(uv), |/ + [xf(vz),, —x,,(vz)E]/J +(xeP, —x,Pe)/]

H

(Ve —2Hg, + Wy + 0%, + 750g) [ReS? (32)

where
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I —

oz O ) L T = alE(E, ) . (33)

. The time-derivatives have also been transformed in these equations.
Thus, time denvatives in Egs. (31) and (32) are taken with € and g fixed, while
those in Fgs. (15} and (16 were taken with v and v fixed. This transformation

. of time-derivatives allows the computation to be done on a tixed grid in the
transformed plane ceven though the physical grid 15 in motion duc to the
movement of the free surface. The terms involving v, and v, in Fgs. (31) and
(32) hence occur becanse of the moving physical-space grid. This procedure
was adopted from Shanks. !

The continuity equation (17) is replaced by an equation with pscudo-
compressibility for numerically conserving mass at cach physical time step:
A ey Ly (3)
7 Ay t,)}'
In this method pscudo-time steps for pscudo-time 7 are required to
satisfy . (17) at cach physical time step Ao This approach can be viewed as
an iteration procedure in pseudo-time 7 to calculate cach physical time step .
The method has been successfully applied recently by several rescarchers!™ 1
to compute the two-dimensional, incompressible Navier-Stokes cquations for
time-dependent flows.  ‘This technique was first introduced by Chorin'’ for
obtaining solutions to the steady-state, incompressible Navier-Stokes equations
. and is characterized by the existence of moving pscudo-pressure waves. They
dic out in pscudo-time leaving a divergence-free velocity ficld at steady state.
The method of employing artificial compressibility has been used successfully
. by many authors for computing steady-state incompressible Navier-Stokes
solutions (see. for example, Kwak ct al.'®).

The parameter % can assume values between zero and ten but is usually
chosen to be one, and so it is in the present work. Then, Eq. (34) 1s in the
transformed computational space

gp 1 ) _
— o+ (e —Velty, X, — X ve) = 0. (35)
Jr J

The movement of the grid during the pseudo-time step A7 is so small

that the terms involving x, and v, have been neglected in Eq. (35).

The kinematic boundary condition (18) at the free surface is for
coordinates in computational space

; Y:
v=v: (D o 2t (36)
. At X

The subscript x refers to the physical space grid points at the free
surface that are not permitted to move in the x-—direction.  An cquivalent
kincmatic condition to Fq. (36) is given in the following equation in which the
grid pomts at the free surface are allowed to move i the x —direction:

v = Y Y = v LA u o (37)
’ ot ot




Both cquivalent kinematic conditions (36) and (37), of course, permit
the grid points at the free surface in physical space to move in the
v —direction.

I'he free surface in physical space maps onto a constant n—line in
computational space, as scen in Fig. b, For a constant p—line, the free
surface conditions (19) and (20), written in computational-space coordinates,
arc

Y= Yiw, = g v~ Relve(P o (38)
K ' Fr-
1 . oy

vy = Mg+ e 4 Redxe P = =) (39)

In addition to the kinematic condition for Y at the free surface, three
conditions are needed to determine P, u, and v at the free surface. Condition
(33) is retained to compute v whereas a lincar combination of Iigs. (38) and
(39) is derived that yields the condition for P. The velocity component v is
then obtained from the continuity equation to conscrve mass at the [ree
surface. The conditions for 2 and v at the free surface y = Y are

Y 1

1 3
s (X, = Yelly) — ———*;Rc luexe +veye + 7(1'5.\‘5 —ueve)l  (40)

> o
= 1<'r2 " ReJ

Yollg =¥eliy +Xev, —x,ve =0 . (41)

At x = 0, the symmetry conditions (22), after being written in
computational-space coordinates, are used to compute v from the Navier-
Stokes equation (32) and P from Eq. (35). The y—coordinate at x = 0 is
obtained from Eq. (29). Of course, u and x arc always zcro on the symmetry
line x = 0, including the symmetry point at the free surface. At this special
point, Y, P, and v are obtained from Eqs. (36), (40), and (41), respectively,
with the symmetry conditions (22) built in.

The boundary conditions (21) and (23) are used with second-order
extrapolations along interior coordinate lines in computational space to obtain
i and v at these boundaries. For instance, at y = —y;, u is obtained from
values of u at the two grid points on a constant {—line closest to the boundary.
Similar considerations apply to v and to the boundary of Eq. (23), except that
constant y—lines are used there.

Adaptive gridding is used in this report by giving a special form to the
coordinate-system control functions P*. Q*, which appear in Egs. (28), (29),
(31), and (32). The basic ideca is to use the equi-distribution of a weight
function along arclength clements in the physical-space grid.!® These cqui-
distribution laws for weight functions wy and w, along arclength ¢lements on
constant p— and &-lines, respectively, are

!

(v} +y%)2 wy = const (42)
1
2 232 _
(x5 4 v3) " w2 = const . (43)
8




Weight functions are usually taken to be functions of the flow gradient,
and they are chosen here to be

(1 + B —1E V14 A2 (44)

(1 +q1)"

wy = (1+ B —2 V1A% . (45)

(1 +g3)%"°

I

AN

i ki
where g = Vu- +v-.

One observes from Eqs. (42) through (45) that the spacing of the
arclength between grid points in physical space will be small if the gradient of
the local flow speed g is high. The grid adapts to the locally high tlow gradient.
If the local flow gradient is zero, uniform spacing will occur.

Anderson'® has shown that if P* and O* have the form

— _(1'_‘_)_5_ Q, - (Wl)n

kd
Wi Wo

P* (46)
the mesh-generating equations (28) and (29) approximate the equi-distribution
laws (42) and (43), respectively. In the computations, coefticients C; and C,
are actually added to the right sides of Eq. (46). C; and C,, which arc
constant in time but vary spatially, are the initial P* and Q*, respectively, for
the initial, non-uniform Cartesian grid in physical space obtained from the
INMESH program.?® This grid is used at the very start of the flow
computation at t = 0 with adaptive gridding then applicd immediately.

On the symmetry line x = 0, the weight function w, is given in the
simpler form

Wo = 1+Av,2, . (47)

Only O* in Eq. (46) and Eq. (47) are required in conjunction with Egs.
(29) and (32) to compute y and v, respectively, on the symmetry line x = (.

Except for the symmetry line, adaptive gridding is used only in thc
interior of the flow region.

Finite-Difference Technique

All spatial derivatives, including one-sided derivatives at the boundaries,
are replaced by finite-difference operators of second order in the
computational space. Thus, it remains to discuss only the implicit time-
diiferencing procedure for the initial-boundary value problem that consists of
Egs. (21) through (25), (28) through (33), (35), (36) or (37), (3R), (40), (41).
and (46). The weight functions in Eq. (46) are provided by Eqgs. (44), (45) or
(47).

The dynamic pressure ficld P at + = ;, = 0 is obtained by solving a
Poisson equation for P in terms of the initial velocity field, Eqgs. (24) and (25).
This is the only time a Poisson equation for P is used.
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The following cquations represent  the mplicit time  differencing
procedure for advancing the tiow solation (£, w, v, x, v) in the interior for the
physical time step & = ¢"*1 — " from physical time level #7210 level n 41 by

using pscudo-time steps Ay = 77 7
. . . 1. , .om- sk i
-\n+l m+1 — gl('\n-k m+l’ .‘n+] mH’ [)_n’ Q,;n) , (48)
'\.n+l.rn+l _ g:(_\.n-kl. m+l. yn+l.m+l’ ]):5:/1, (\):;:n) . (49)
1)n+l.m+l _ [)n+l.m
— _(T:muﬂ.m-rl . (5())
A7
l.m+l n
u""t — U ,
< . 'le(-l./.r-H . (51)
‘,'l+l.m+l ot
rg+l.m+l ) (52)

_N - -

Egs. (48) through (52) are obtained from Ligs. (28), (29), (35), (31), and

(32), respectively. Superseripts refer to time levels. ‘The nonlinear functions

g and g-> in Lgs. (48) and (49) are functions of the latest updated values

prrbomal opntbom g the neighboring points after using spatial differencing.

In Egs. (51) and (52) the time derivatives for «w and v are on the left side of the

cquations while all remaining terms of Eqgs. (31) and (32) (in diffcrence form)

are included in the functions ry and r; on the right side of Egs. (51) and (52).

Physical time derivatives occur in Eqgs. (31), (32), (36) or (37) and arc
differenced to first order according to

n+1, m+1 n
_ 1 —/

fi= < . (53)

where f stands for w, v, x, v, or Y. All spatial derivatives of the inttial-
boundary value problem, after second-order finite differencing, are cvaluated
by using the latest available updated values of the implicit scheme.

The flow solution at the new physical time level 1 + 1 is obtained when
the convergence criteria

lfn+l.m+ll > a0 . (54)

41, m 41 n+1, m
L "<, (55)
fn+1. m =

arc satisfied for f= u, v, x, and v at all grid points of the computational
space. Then, fr+l = frrl-m+l Iy Fgs. (54) and (55) ¢ and «; arc small
specified parameters.

Rogers and Kwak' used the implicit scheme of Egs. (50) through (52)
for flow problems with fixed geometry. Lgs. (51) and (52) can be viewed as an
Fuler backward scheme for the Navier-Stokes equations. The convergence of
P i preudo-time ensures conservation of mass at cach physical time step as
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discussed carlier. This process is also scen from Eq. (50).

Rogers and Kwak® used upwind diffcrencing for the convective terms
of Eqgs. (§1) and (52) which is necessary for high Reynolds numbers. In this
work a central difference operator was applied.

A “four-color” scheme (Fig. 1c¢) is used in the interior of the
computational space for Eqs. (48) and (49) and for Lgs. (50) through (52) in
obtaining the latest values with superscripts 1 + 1, m + 1 (updates) for x, y
and P, u, and v, respectively. The use of such a scheme, which can be
vectorized, resulted in an order of magnitude increase in computer speed on
the Cray-XMP 24 on which the computations were performed.

The “four-color” scheme, as applied to ligs. (50) through (52), for
example, consists of obtaining updates for I, u, v simultancously at all the o
points, then at all the  points, the x points, and the A points, in that order.
The latest available updates are used in this process.

The computational cycle for one complete pseudo-time step iteration
consists of (a) applying the “four-color” scheme to Eqs. (48) and (49) followed
by obtaining the latest updates for y at successive points along the symmetry
boundary Eq. (22) from Eq. (49); (b) applying the “four-color” scheme to
Eqgs. (50) through (52); (c) obtaining updates for P and v at successive points
along the symmetry boundary Eq. (22) from Fgs. (50) and (52), respectively;
(d) obtaining updates for P, u, v, and Y at successive points along the free
surface from Lgs. (40), (38), (41), and (36), respectively; and (¢) obtaining
updates for u and v at successive points, first along the boundary x = x; from
I:q. (23) and then along the boundary y = —y; from Eq. (21).

At the completion of this computational cycle, after the latest updates
for x, v, u, and v satisty the convergence criteria of Eqgs. (54) and (55) at all
points, thesc updates are the solution at the new time level n + 1. If the
convergence criteria are not met, cycle (a) through (e) is repcated until they
arc met.

In this report a spatially varying pseudo-time step A7 is used that can be
interpreted as an attempt to use a more uniform pseudo-Courant number
throughout the field.>! A spacially varying Ar can be effective for physical-
grid spacings that vary from very fine to very coarse grids, a situation which
particularly occurs for the two Re = 50 cases. Pulliam and Steger?! mention
that a spatially varying physical-time step &f has been used by a number of
rescarchers to obtain solutions of stcady-state compressible fluid flows.
Gorski** applies a spatially varying pseudo-time step for obtaining solutions of
steady-state incompressible fluid flows. It appears logical, thercfore, that in
this study, which obtains the solution of a “steady-state” incompressible fluid
flow at cach physical time step A by marching through pseudo-time steps Ar,
a spatially varying pseudo-time step A7 be used. This time step, used in liq.
(50), is

j:‘L\T,.,,/

AT = 56
— (56)




and scales directly with the area and aspect ratio of a physical grid cell (|J] is
the area of a cell in physical space). The value of the parameter A7, will be
given later.

The form of Eq. (56), given by Hodge,? is borrowed from Thompson
and Shanks (Appendix D) where it appears somewhat disguised in a
discussion relating the artificial-compressibility procedure and a Poisson
equation for the pressure.

Thompson and Shanks,!* who solved the time-dependent, two-
dimensional Navier-Stokes equations for the viscous fluid flow about a
hydrofoil at a free surface, used artificial compressibility to obtain the
pressure at the frec surface and the hydrofoil, and they employed a Poisson
equation for the pressure in the interior of the flow region. In the present
report, in contrast, artificial compressibility is used to obtain the pressure in
the interior of the flow region, and boundary conditions for the pressure are
used to obtain the pressure at the free surface and other boundaries.

For the case Re = 50, Fr = 0.356 only, a free surface instability
developed at ¢+ = 3.52. Starting at this time, upon convergence at cach new
physical time (level n + 1), the values for f= u, v, P, Y at the free surface
point  are finally given in terms of their corresponding converged values f:

fi= (e = fia + 4G + i) +107) (57)

This filtering process was developed by Shapiro®* and was used by
Longuet-Higgins and Cokelet,” among others, to eliminate numerical
instability at the free surface. For Re = 50, Fr = 0.356, filtering was applied
at the free surface from x = 1.0 to 2.0 during the time ¢ = 3.52 to 4.75 and
from x = 1.0 to 2.94 during the time t = 4.75 to 9.52.

The kinematic condition (36) was used for all cases except Re = 50,
Fr = 1.125 from ¢ = 2.40 to 4.06. During that time Eq. (37) was used because
of the need to crowd more free-surface points in the x-direction to resolve the
steep wave generated for this case.

The relaxation factors were chosen to be 1.85 for Eqs. (48) and (49) and
1.0 for Eqgs. (51) and (52). The parameters (€1, €;) = (0.01, 0.01) were
applied to Eqgs. (48) and (49) and (¢, ;) = (0.03, 0.01) to Eqs. (51) and (52).

The adaptive grid parameters (A, B) = (2.0, 2.0) were used for all
cases except Re = 50, Fr = 1.125 from ¢ = 3.10 to 4.06. During this time,
(A, B) were gradually increased to (3.8, 3.8).

For the two Re = 50 cases, the parameters (&f, Ar,p) were gradually
increased from (107, 460.8) to (0.0003, 2560) during the time ¢t = 0 to 0.019.
For these two cases, the paramecters (Af, Ar,s) = (0.0003, 2560) did not
change for the remainder of their time histories, except that At was cut back
to 0.00015 for Fr = 0.356 from ¢ = 3.52 to 5.02 and that the parameter sct
(0.0003, 2560) for Fr = 1.125 was reduced to (0.000025, 1920) from ¢ = 4.0 to
4.06. The total time span extends to f = 9.52 and ¢ = 4.06 for Fr = 0.356 and
Fr = 1.125, respectively.




Lor Re = 10, Fr —= 1.125, the spatially varying pseudo-time step A7 was
not used because the grid in physical space remained more uniform in time
than it did 1 the other cases, since the flow gradients are smaller for the case
Re = 10 than for the other cases. For Re = 10 the parameceters (A, A1) were
gradully increased from (107%, 1.6) to (0.00015. 8.0) during the time 7 = 0 to
0.007. The paramcters (0.00015, 3.0) were then retained untl the end at
t = 9.04.

For the two Re = 50 cases a maximum ol three to eight pscudo-time
step iterations per physical time step near 1 = 0 were needed. Tteraticas for
Iy = 0.336 then gradually leveled olf to one to two iterations per physical-time
step tor the remainder of the tume. Tterations for Ir = 1,125 leveled off to
two but then increased to two to five iterations per physical-time step as the
wave steepened. The Re -= 10 case required fewer iterations per physical-timie
step than the Re = SO cases.

Masy conservation was monttored 1 the flow field for the three {flow
cases. The details are here omitted.

The computer time used on the Cray-XMP 24 for Re = 50, Fr = 0.356
and  Re = 30, Fr = 1.125. which were run until ¢ = 9.32 and 4.06.
respectively. were approximately 10 and 65 minutes, respectively. Re = 10,
which was run until ¢ = 9.04, nceded 75 minutes.

To bulld confidence ' the numerical method used, the case of
Re = 50, I'r = 0.356 was also computed with a grid which had four times the
number of cells of the original grid, that is, (313x269) points. The results,
which arc discussed later, agree quite well with those of the coarser grid of
(157x135) points.

The relationship among A7p, A, the fineness of the grid, and the
convergence criteria stll must be explored for maximum  efficiency and
accuracy of the numerical method used in this work.

An auxiliary quantity of interest in the generation of vorticity at the free
surface is the distribution of surface vorticity w;. For a given free surface
v = Y(x, r) and surface veloeity components u, and v, the surface vorticity is
given by the well-known formula “twice the surface curvature times tangential
velocity™, or in this report’s notation

2Y

we = T 3 (u.\' + )/X‘lu B 58)
(1 + Y3) ) (

In computational spacc. ¥, and ¥, must be replaced by

Ve
YE{ — Xee
- Y( ‘ '\:f I}
)/T' = —'— . Y‘,‘, = ——_z— . (‘ ))
Y (xe)
Numerically, an alternative way of computing o can be chosen by the
definition ol == v /i — du /oy atself. Since in this case information [rom

the ntertor points is incorporated into the numerical scheme, the result
appears more accurate than with the use of Fqo (58) i which ¥ appears, a
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quantity difficult to obtain with sufficient accuracy. In Fig. 5 the discrepancy
between the two methods is shown for the special case Re = 50, Fr = 0.356
at + = 5.02 for both the coarser and the finer grids. A decision as to which
formula is more accurate cannot yet be made.

RESULTS

Numerical computations were performed for Re = 10 and 50,
Fr = 1.125, and for Re = 50, Fr = 0.356 from the initial position
X, = 0.5, v, = 0= 3. The Froude numbers were selected to coincide with
those of Sarpkaya ct al." and Telste.’

In the case of Re = 10, Fr = 1.125 diffusion dominates convection so
much (the fluid is so “viscous™) that the maximum elevation y = 0.307 at
{ = 4.0 causced by the vortex motion is small compared to the corresponding
inviscid-flow casc of Sarpkaya et al.® and Telste.” The free surface returns,
after the maximum clevation has been reached, monotonically to the state at
rest. Fig. 6 displays the vector field of the velocity at ¢ = 4.0, and Figs. 7 and
8 show cqui- vorticity lines at + = 4.48 and t = 9.04. The vorticity distribution
on the free surface is seen in Fig. 9. The data for the positions of the vortex
are recorded in Table 1. The path is plotted in Fig. 10 and compared with the
solution for the potential flow with a flat surface, EEq. (1). In viscous flow, the
center of the vortex can be defined either as the place of extremal vorticity (in
this case of mmimum vorticity) or as the center of the whirl (center of the
nested streamlines). The latter definition, however, depends on the choice of
the reference frame. In Fig. 6 the reference frame is fixed to the undisturbed
free surface and the vortex is moving relative to this frame. If the reference
frame is fixed to the vortex center, the position of the center of the whirl
(moving relative to the reference frame) shifts closer to that of the minimum
vorticity (see next paragraph for an example). Even then, these two locations
do not nccessarily coincide as the analytical solution for a decaying vortex
dipole demonstrates.”® Fig. 10 shows that the path of the point of minimum
vorticity is closer to the axis of symmetry and closer to the free surface than
the path of the whirl’s center. The phenomenon of “rebounding” is observed
in both cases, that is, the turning away of the vortex from the free surface.
The elevated surface returns to the state at rest without oscillation. At the last
computed time ¢ = 9.04, || is 0.2383, diminished from the initial value
| wmin] = 39.43. In Fig. 11 |wq;q| is plotted against time. The curve follows
closcly the 1/t-decay according to the Hamel-Oseen solution, Eq. (25),
indicating that numerical diffusion is minimal.

For Re = 50, Ir = 1.125 the situation is quite different. The surface
clevations at three different times in Figs. 12 through 16 reveal a much
stronger cffect of the ascending vortex, and a local depression of the surface,
called a “scar” by Sarpkaya and Henderson,® is now visible that was not
apparent in the case of Re = 10, I'r = 1.125. The surface clevations for
Re = 50, I'r = 1.125 are closer to the curves for the inviscid fluid. In fact,
Figs. 12, 15, and 16 may be compared with Figs. 5a, 5¢, and Se of Sarpkaya et
al. The dimensionless time T in their work is related to this report’s time ¢ by

= t — 3. Althouzh it takes a little longer for the viscous fluid flow to reach
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states comparable to those of the inviscid fluid, the qualitative agreement
between the two cases i1s good with regard to frec-surface height at the
centerline and the locations of whirl center and scar. The same statement can
be made about Telste’s data.” They can be compared with those in this
report, if one considers the relation between the dimensionless time t7,, and
tto be tyege = 27(t +2). The Froude numbers arc related by Fryy,, = 2nFr.

In Iigs. 13 and 14 a scction of the flow field of Fig. 12 is compared for
two reference frames. The reference frame f(ixed to the center of the whirl
(Fig. 14) shows that the center is shifted to the left, but the new center does
not reach the location of |wyint. The equi-vorticity lines are displayed in Figs.
17 through 19. The merger of the vorticity field of the vortex with that at the
free surface is clearly visible. The vorticity distribution on the free surface is
given in Iig. 20. The path of the vortex center is plotted in Fig. 21 and the
positions of the vortex center put together in Table 2. The movement of the
vortex is straight up and no deflection duc to the free surface is observed. The
decrease of || with time is given in Tig. 22 and follows the 1/t-law. The
computations were stopped at + = 4.06 when convergence thercafter could not
be obtained for the grid used. Ilowever, a negative horizontal velocity
component at the free surface indicates that the trend toward a constriction is
present, as it is in the case of the inviscid fluid. The mounded shape of the
free surface around the symmetry line was stll rising when the computation
was terminated.

A comparison of Iig. 20 with IYig. 22 shows that the surface vorticity
becomes larger than |wyi,| of the vortex from approximately + = 4 on. This
is an interesting situation because 1t means that the vorticity concentration of
the flow-generating vortices is less than the surface vorticity generated by the
vortices. The statement contrasts the result obtained for the flat slip-surfacc
by Peace and Riley,'! that the flat surface is always a sink of positive vorticity
(or a source of negative vorticity) because wy = 0.

The final case computed was Re = 50, Fr = 0.356. The lower Froude
number mecans less disturbance of the free surface by the vortex motion. This
smaller disturbance is observed in Figs. 23 through 25. On the centerline the
free surface reaches a maximum clevation, then falls to a minimum, climbs
again to a maximum, and comes to the state at rest. In other words, the free
surface oscillates.  This oscillation is in contrast to the case of
Re = 10, Fr = 1.125 that showed only an up and down movement of the free
surface at the center line. The scar is now pronounced, with the high surface
curvature that results in high surface vorticity (Figs. 26 through 31). I'rom
this concentration of vorticity a sccondary vortex develops which becomes
visible at t = 5.02 in front of the primary vortex (Fig. 28). This figurc was
also computed with the finer (313x269) grid in Fig. 29. The two figures agree
well except for the low-level positive values. A little later, at t = 6.52, the
sccondary vortex has placed itsclf directly in front of the primary vortex
farther away from the free surface (Fig. 30). The computations were
continued without any numerical difficultics and were stopped at + = 9.52. In
Fig. 32 the free-surface vorticity is displayed, and in Iig. 33 the path of the
vortex center. In Table 3 the position data are recorded. In contrast to the
previous case of Re = 50, I'r — 1.125, the path of the vortex center now
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shows a rebound from the free surface. The decrease of |wy;q | with time is
shown in Fig. 34, The agreement between the curves in Fags. 22 and 34 1s very
good. and the 1/r-law is observed. This means that the decay of the vortex-
center vorticity 1s not influenced, or barely so, by the presence of the free
surface. Here again, the data are compared with those for the finer grid, and
alimost no distinction can be observed.

The veloceity field in Fig. 23 can be compared with that for an inviscid
Muid as shown by Telste.” The scars are less pointed in the case of a viscous
fluid than i the case of an nviscid one, and the position of the vortex center
is lower in the viscous-flow case than in the nviscid-fluid one.

The influence of surface tension, the case of an oblique approach of a
vortex pair toward the free surface, and an attempt to compute flows with
higher Reynolds number will be treated in a forthcoming paper.
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Table 1

Positions xo v oof ot and center of whirl as a lunction of time ¢ for
Re = 10, Ir = 1.125.
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Table 2

Posttions v, v of | .oyin | and center of whirl as a function of time ¢ for
Re = S0. 1r = 1.125.

! whirl
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Table 3

Positions ¥ v of [wpin | and center of whirl as a function of time ¢ for
Re = 50, I'r = 0.350.
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FREE SURFACE

Fig. 1. (a) Skctch of the flow situation. (b) Mapping of the physical space
onto the computational space. (¢) “Iour-color” scheme.
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Fig. 7. Lqui-vorticity fines for Re = 10, Fr = 1.125 at ¢ = 4.48. The values
of the contours are +0.05, +0.15, *0.25, etc. Solid lines represent
negative, dashed lines positive data.




Fig. 8. Lqui-vorticity lines for Re = 10, I'r = 1.125 at + = 9.04. The values
of the contours are —0.15, —0.13, ctc. Solid lines represent negative,
dashed lines positive data.
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